Oxygen Consumption Changes with Yoga Practices: A Systematic Review

Anupama Tyagi, MA, PhD(c)¹; Prof Marc Cohen, PhD, MBBS (Hons)¹

RMIT University, Bundoora, Victoria, Australia

Abstract

Oxygen consumption varies with physical and mental activity as well as pathological conditions. Although there is a strong relationship between yoga and metabolic parameters, the relationship between yoga and oxygen consumption has not yet been formally reviewed. This systematic review attempted to include all studies of yoga that also measured oxygen consumption or metabolic rate as an outcome. A total of 58 studies were located involving between 1 and 104 subjects (average 21). The studies were generally of poor methodological quality and demonstrated great heterogeneity with different experimental designs, yoga practices, time periods and small sample sizes. Studies report, yoga practices to have profound metabolic effect producing both increase and decrease in oxygen consumption, ranging from 383% increase with cobra pose to 40% decrease with mediation. Compared to non-practitioners, basal oxygen consumption was reported to be up to 15% less in regular yoga practitioners and regular yoga practice was reported to have a training effect with oxygen consumption during submaximal exercise decreasing by 36% after 3 months. Yoga breathing practices emphasise breathing patterns and retention ratios as well as unilateral-nostril breathing and these factors appear critical in influencing oxygen consumption. A number of studies report extraordinary volitional control over metabolism in advanced yoga practitioners who appear to be able to survive extended periods in airtight pits and exceed the limits of normal human endurance. More rigorous research with standardised practices is required to determine the mechanisms of yoga’s metabolic effects and the relevance of yoga practises in different clinical populations.

Keywords: yogic, meditation, pranayama, metabolic rate/cost, energy expenditure
Introduction

Human metabolism is the result of continuous anabolic and catabolic processes that maintain homeostasis and sustain life. Metabolic pathways include a complex network of nutritional, neuronal and humoral inputs that are integrated by the central and autonomic nervous systems through pathways that monitor and maintain physiological functioning. All metabolic processes generate heat and are ultimately dependent on the expenditure of energy via consumption of oxygen, which drives oxidative phosphorylation.

Energy expenditure is a directly related to metabolic rate and oxygen consumption and these terms are often used interchangeably. Monitoring oxygen consumption has received a great deal of interest in determining oxygen delivery to tissues, cardiorespiratory function and metabolic response to activity. Assessment of oxygen consumption is used in determining energy requirements for healthy lifestyles, exercise programs, and critically ill patients\(^1\)–\(^3\) and oxygen consumption is reported to increase with adaptation to physiological stress and pathology\(^4,\)\(^5\). The measurement of energy expenditure can be performed via direct calorimetry, which measures heat loss using insulated chambers, or via indirect calorimetry, which directly measures oxygen consumption\(^6\) through respiratory gas exchange. Direct calorimetry is not frequently used as it is complex, does not accurately measure rapid changes in metabolism and requires significant expertise and elaborate equipment including specially constructed chambers. Indirect calorimetry, is the most commonly technique for measuring energy expenditure and can be used to measure the substrate of metabolism as well as oxygen consumption, which can be expressed in terms of \(\text{VO}_2\) (Absolute oxygen consumption), \(\text{VO}_2/\text{kg/min}\) (Relative oxygen consumption), and MET (Metabolic Equivalent Task)\(^2,\)\(^3,\)\(^7\).

Oxygen consumption, stress and pathology

Oxygen consumption is maximal during intense physical activity and lowest during basal or resting conditions and naturally increases with both psychological and physiological activity, stress and pathology, and higher oxygen consumption appears to correlate to accelerated aging\(^4,\)\(^5,\)\(^8,\)\(^9\). Oxygen consumption has also been found to
increase with activities such as mental arithmetic and playing video games10-13 as well as with psychological distress and anxiety14. A growing body of research further suggests that oxygen consumption is higher in various pathological conditions including, congestive heart failure15, locomotor impairment16, HIV17 and chronic obstructive pulmonary disease18, and insomnia2, congestive heart failure19. Oxygen consumption has also been found to increase with features of Metabolic Syndrome including obesity20-22, Type II Diabetes23-26 and hypertension27-29.

The measurement of oxygen consumption can provide insights into overall homeostatic balance and response to stress, which are mediated through multiple pathways under the control of the autonomic nervous system and the hypothalamus. The sympathetic nervous system is involved in rapidly mobilising vital physiological functions via sympathetic-adrenal-medullary pathways (SAM) in response to acute stress30-32 which serves to increase oxygen consumption. Repeated or chronic stressful stimuli may lead to changes in the hypothalamic-adrenal-pituitary axis (HPA) leading to a sustained stress response involving cognitive, emotional, endocrine and immune system changes33. The parasympathetic nervous system provides a counter to the stress response and reduces oxygen consumption by activating the so-called ‘relaxation response’34, which serves to reduce physiological arousal and induce a hypometabolic state mediated via enhanced vagal activity35. Such hypometabolic states are suggested to enhance survival in plants and animals by facilitating restorative and repair functions36.

Yoga, stress and metabolism

Mind-body practices that induce relaxation have been traditionally used by people across cultures to improve health and serve as a path for spiritual awakening37. Yoga is an ancient mind-body approach that combines the practice of postures (asana), breathing (pranayama) and meditation (dhyana) with the aim of achieving an effortless state of harmony (samadhi).

Yoga postures include both static and dynamic postures that are designed to attune the body to a stable state suitable for meditation. Yoga breathing includes a range of practices such as Bhastrika (bellows breath), \textit{Ujjayi} (victorious breath), \textit{Kapalbhati} (lustrous cranium) and unilateral-nostril breathing, which can be performed at different rates (reported as breath/min) and with different retention periods and patterns that involve either
internal retention (Inspiration:Retention:Expiration (I:R:E)), or external retention (Expiration:Retention:Inspiration (E:R:I)). The yogic state of meditation is characterised by decreased oxygen consumption and cardiovascular activity\(^{(35, 38)}\) and has been shown to elicit the relaxation response\(^{(34)}\). This meditative state, which is distinct from rest\(^{(39, 40)}\), physical relaxation\(^{(41)}\) and sleep\(^{(42)}\), may be voluntarily induced, even while performing fixed physiological workloads\(^{(43)}\).

The ability of yoga to induce relaxation and relieve stress has been widely reported\(^{(44-46)}\) and there are reports of yoga practices reducing acute, chronic and post-traumatic stress. For example yoga is reported to relieve workplace stress\(^{(47)}\), examination stress\(^{(48, 49)}\) and stress-induced inflammation\(^{(50)}\). Yoga practices have also been reported to improve many clinical conditions such as anxiety\(^{(51-53)}\), depression\(^{(53, 54)}\), negative mood states\(^{(55-58)}\) and post-traumatic stress disorder (PTSD) symptoms in war veteran\(^{(59-61)}\), tsunami survivors\(^{(62, 63)}\), hurricane refugees\(^{(64)}\) and flood survivors\(^{(65)}\). Furthermore, two reviews, one involving 35 clinical studies\(^{(66)}\) and the other 8 controlled trials of healthy adults\(^{(67)}\) acknowledge the promising role of yoga in reducing stress. Li et al. 2012 also suggest yoga as a potential adjunct to pharmacologic therapy for patients with stress and anxiety\(^{(66)}\). There are further studies to suggest that regular yoga practice reduce physiological and metabolic activity under normal conditions.

Compared to non-practitioners, regular yoga practitioners have been found to have lowered resting heart rate\(^{(68)}\), blood pressure\(^{(68)}\) breath rate\(^{(69)}\) and metabolic rate\(^{(70, 71)}\). Yoga has also been found to improve all features of metabolic syndrome including obesity\(^{(72, 73)}\), hyperlipidaemia\(^{(74-76)}\), hyperglycemia\(^{(75, 77, 78)}\) and hypertension\(^{(79-81)}\), with three separate randomised controlled trials demonstrating benefits of yoga in metabolic syndrome patients\(^{(82-84)}\).

While there seems to be a strong relationship between yoga and metabolic parameters, the relationship between yoga and oxygen consumption has not been formally reviewed. The objective of this paper is to systematically review previous research exploring the relationship between yoga and oxygen consumption and explore the impact that different yoga practices have on oxygen consumption in different populations.

Methodology
For this systematic review, a comprehensive search of multiple databases including Scopus, PUBMED, PSYCHINFO, CINAHL, Science Direct database was conducted and a separate search was conducted in Indian medical journals through IndMed which index over 100 prominent Indian scientific journals. Similarly, a search was performed of Yoga Mimamsa, which includes published yoga research literature dating back from 1920 not listed in the above databases. The archives of the International Journal of Yoga were also searched, along with the reference citations from all full text papers identified. The primary search terms included Yoga, yogic, pranayama, yoga nidra, breathing, relaxation, meditation, Transcendental meditation, Brahmakumari meditation, Raja Yoga meditation, Om meditation, mantra meditation, Sahaj Yoga meditation, Cyclic meditation and Kundalini yoga, Kriya yoga and Sudarshan kriya along with key words ‘oxygen consumption’, ‘energy expenditure’, ‘metabolic cost’ and ‘metabolic rate’.

All studies that had oxygen consumption (either at resting, during yoga intervention or during physical exercise in which yoga included in the intervention) as an outcome were included in the systematic review. The search was performed for articles published up to Dec 2012 and was not otherwise restricted by date or study population. The review included studies that examined a range of yoga practices including asana and/or integrative yoga, breathing, meditation and yogic relaxation practices used either alone or as an integrated practice. The studies were excluded if they were not in English (n=4), unobtainable (n=5), in press (n=8) or only documented study protocol (n=5). Studies were also excluded if they only involved meditation (religious or non-religious) and relaxation practices that are not directly associated with yoga such as Zazen/Zen Buddhist meditation, Vipassana Meditation, Tum-Mo yoga, Qigong, Relaxation Response (RR), Progressive Muscle Relaxation (PMR) and Autogenic Relaxation (AR). However, it was beyond the scope of this systematic review to collect and synthesize clinical outcomes other than oxygen consumption or critically assess the methodological quality of all studies. The selection of relevant studies is shown in Figure 1 and the results, including their statistical significance are noted in the relevant text and tables.

Results

A total of 58 studies of oxygen consumption and yoga practices were extracted (Figure 1). These studies involved between 1 and 104 subjects (average 21) and demonstrated great heterogeneity with many different experimental
designs, yoga practices and time periods. Extracted studies, which were categorized according to the type of intervention (pranayama practice, meditation/relaxation, integrated yoga/asana practice, integrated yoga with physical activity), are presented in Tables 1-4 which also include information about study design.

Of the total studies, 35 studies were published from India (70, 71, 85-117), 15 from USA (118-132), 2 from UK (133, 134) and 1 each from, Mexico (135), New Zealand (136), Thailand (137), Brazil (138), Japan (139) and Sweden (140). Most studies reported assessing direct measurement of respired gases for measuring oxygen consumption using indirect calorimetry techniques, whether through open circuit, closed circuit, bag system or respiratory chamber method. Some studies derived the oxygen consumption through standard equations such as oxygen consumption was predicted through regression equation with the measures of heart rate and oxygen consumption of submaximal exercise (84), VO2 max was predicted through achieved workload and using standard formula from American college of sports and medicine (116, 130). Oxygen consumption was reported to both increase and decrease with different yoga practices. Increases in oxygen consumption ranged from 7.7% with Ujjayi breathing to 383% during cobra pose (Table 1 &3). Studies also report decreases in oxygen consumption with slow yoga breathing techniques and meditation practices ranging from a 3.7% decrease during Om meditation to a 40% decrease in an advanced yogi during meditation in an air-tight pit (Table 2). Basal oxygen consumption is also reported to be up to 15% less in regular yoga practitioners compared to non-practitioners and oxygen consumption during submaximal exercise is reported to decrease by 36% after 3 months of regular yoga practice (Table 4).

Pranayama Practices and Oxygen Consumption

Table 1 summarises 16 pranayama (yogic breathing) studies that include a total of 143 participants and report wide variations in oxygen consumption. While oxygen consumption was seen to increase with most breathing practices performed at both fast (232 breath/min) and slow (1 breath/min) rates (Table 1), a decrease in oxygen consumption from rest was also seen in some slow breathing practices. The highest increase in oxygen consumption was seen with extremely rapid Bhashrika breathing, which involves rapid, forced thoracic inhalation and exhalation. When Bhashrika was performed at a rate of 232 breath/min by 3 advanced practitioners oxygen consumption was reported to increase by 208% (140) and increases in oxygen consumption of 30%, 24%, 22%, 17%
and 15% are reported with Bhastrika performed at different rates and retention periods\(^\text{88, 90, 118, 119}\). Increases in oxygen consumption of 12% \(^\text{119}\) to 50% \(^\text{87}\) are also reported with Kapalbhati breathing, which involves forced rapid exhalation. Unilateral nostril breathings (alternate nostril breathing, right nostril breathing and left nostril breathing) are reported to increase oxygen consumption with a 150% increase during alternate nostril breathing \(^\text{94}\) and increases of 37% \(^\text{96}\) to 18% \(^\text{93, 96}\) reported immediately after alternate nostril breathing (ANB), right nostril breathing (RNB) and left nostril breathing (LNB) practices.

Oxygen consumption is also reported to increase with some slow yoga breathing. Ujjayi breathing, which involves controlled slow, deep breathing with long inhalation and exhalation and gentle contraction of the glottis creating a soft snoring sound \(^\text{141}\), has been consistently reported to increase oxygen consumption, even at extremely slow rates. An increase of 10% is reported in a single advanced practitioner while practicing Ujjayi at a rate of 1 breath/min\(^\text{139}\), while further studies report increases in oxygen consumption of 25% and 52% during Ujjayi with a 40 second retention (rate of 1.26 breath/min)\(^\text{119}\) or with I:R:E ratio of 1:1:1\(^\text{92}\). An increase in oxygen consumption was also reported with Ujjayi performed at different altitudes with a 16% greater oxygen consumption observed in a single practitioner at 3200m elevation practicing Ujjayi breathing at 3 breath/min compared to practicing Ujjayi breathing at 520m elevation at 1.5 breath/min\(^\text{86}\). An increase in oxygen consumption to 17% has also been reported in advance yoga practitioners during slow paced breathing with I:R:E ratio of 1:4:2\(^\text{138}\).

Only 4 studies (Table 1) report decreases in oxygen consumption with pranayama. A decrease in oxygen consumption of 4%, 21% and 19% is reported during slow Ujjayi breathing at rates of 2 breath/min\(^\text{90}\), 1.4 breath/min\(^\text{91}\) or with a I:R:E ratio of 1:4:4\(^\text{92}\). A decrease in oxygen consumption of 16% is also reported during Bhastrika breathing at 12 breath/min\(^\text{95}\).

Yoga Meditation, Relaxation Practices and Oxygen Consumption

Table 2 summarizes 15 studies with a total of 310 participants that consistently report reduced oxygen consumption during different meditation and relaxation practices. Two studies of yogic relaxation practices report 25.2% and 23% reductions in oxygen consumption compared to rest\(^\text{100, 101}\). Transcendental meditation is also reported to
produce reductions of oxygen consumption from rest with 3 separate studies reporting reductions of 20%, 17% and 5% \(^{120-122}\). Reductions in oxygen consumption from rest of 15% and 3.7% are further reported during 2-3 minutes of meditation \(^{95}\).

Studies comparing meditation with non-yogic relaxation techniques report modest or no difference between interventions. Four studies report no difference in oxygen consumption between groups practicing Transcendental and those practicing a control relaxation intervention \(^{123,124,134,136}\), while a further study reports no significant reduction in oxygen consumption from baseline rest during either after Om meditation or relaxed sitting, despite reported reductions in heart rate and increases in galvanic skin response \(^{117}\).

Among the studies reporting reductions in oxygen consumption, the most dramatic reductions were seen in two studies involving advance yoga practitioners, with one study reporting reductions in oxygen consumption of 40% below rest during a 4 hour stay in an air tight subterranean chamber \(^{99}\) and another study reporting reductions of 32% and 37% below rest during two separate 10 hour stays in an air tight box \(^{97}\). Reductions in oxygen consumption of around 35% below rest are also reported during meditation in a group of experienced yogis (n=9), \(^{138}\). An early study with 3 advanced yoga practitioners further reports that during a prolonged stay in an air tight pit, advanced meditators could tolerate ambient O\(_2\) levels of 12.2% and CO\(_2\) levels of 7.3% \(^{98}\).

Asana/Integrated Yoga Practices and Oxygen consumption

Table 3 presents 13 studies with a total of 272 subjects that consistently report increases in oxygen consumption with different yoga asanas (postures). The most dramatic increase was seen in a group of 21 male practitioners who experienced a 383% increase in oxygen consumption while performing cobra pose \(^{104}\). Increases in oxygen consumption were also reported with warrior III pose (300%) \(^{125}\), plough pose 2 (160%) \(^{95}\), Hero pose (159%) \(^{103}\), headstand pose (68%) \(^{85}\) and accomplished pose (27%) \(^{102}\).

Over the course of a yoga session oxygen consumption has been reported to increase by 100% with Ashtanga yoga \(^{126}\), 114% with Hatha yoga \(^{131}\), 133% with Thai yoga \(^{137}\) and 144% with Iyenger yoga \(^{125}\). Three studies have examined oxygen consumption during Sun Salutation (a dynamic sequence of 12 postures) and report that oxygen
consumption increased 205% above resting levels and 25% and 81% above the levels during static postures.

The reported increases in oxygen consumption seen with yoga practices are less than observed with maximal or submaximal exercise. Oxygen consumption during Thai yoga is reported to be 35.5% of VO₂max and Vinyasa yoga, 50% bow posture 26.5% and Shavasana (supine pose), 9.9% of VO₂max. Similarly Iyenger, Ashtanga and Hatha yoga sequences have been shown to be of lower intensity than sub-maximal exercise, having oxygen consumption that is 26%, 33% and 54% lower than oxygen consumption during treadmill walking at 4mph, 3 mph or 3.5mph respectively.

While oxygen consumption is reported to increase during a yoga session, there are reports that oxygen consumption may fall below pre-session levels immediately after certain practices. During Cyclic meditation, which involves a series of postural sequences interspersed with periods of relaxation, oxygen consumption is reported to increase by up to 55% during the active phase and then fall to 19% below pre-session levels in the immediate post session period. Similar results are reported in a further study which reports a 32% decrease in oxygen consumption immediately after Cyclic mediation.

Regular Yoga Practice, Physical Activity and Oxygen Consumption

Table 4 presents 16 studies involving 516 participants that measured oxygen consumption at rest or during physical activity (sub maximal and maximal) after 1 month to 24 month of integrated yoga practice (including asana, pranayama and relaxation) along with two studies comparing oxygen consumption at rest in yoga and non-yoga practitioners and one study comparing oxygen consumption between groups who regularly practiced lotus posture and groups of regular exercisers or healthy sedentary subjects.

Most of these studies report regular yoga practice leads to progressive reductions in oxygen consumption over time. In a 3 months cohort study, yoga practice was found to reduce oxygen consumption during submaximal exercise by 36% compared to baseline levels. A randomized trial involving male soldiers found that 6 months yoga practice (n=15) reduced oxygen consumption during submaximal exercise by 5.7% (P<0.05) compared to no
change in a physical training group (n=15) \(^{114}\), while a non-randomised study reports that 12 months of regular yoga practice with regular sports activity improved submaximal work efficiency in athletes with 51% greater work output per litre of oxygen consumed, compared to no change in regular sports activity group \(^{112}\).

VO\(_{2\text{max}}\) was also reported to increase with regular yoga practice ranging from 6 weeks to 6 months in diverse populations. A 3% increase in VO\(_{2\text{max}}\) is reported in the cohort of middle aged yoga practitioners who practiced intensive yoga for 11 weeks \(^{142}\) and 7% increase in VO\(_{2}\text{max}\) in cohort of yoga navies who practiced integrated yoga for 8 weeks \(^{128}\). Similarly, up to 7% increment of VO\(_{2\text{max}}\) is reported in randomized trial of 6 months in male soldiers with integrated yoga (n=17) compared to no change in a physical training group (n=11) \(^{115}\) and a 13% (P<01) increase in VO\(_{2\text{max}}\) is reported in elderly subjects in randomised trial after 6 weeks of yoga with practice (n=20), similar to significant increase with aerobic training (n=20) \(^{113}\).

Increases in VO\(_{2\text{max}}\) of around 17% are also reported after yoga practice in two cohort studies including a 6 week study of healthy subjects (n=17) \(^{116}\), and an 11 week study of elderly yoga practitioners (n=9) \(^{142}\). Similar increases in oxygen consumption are reported in an 8 week randomised controlled trial of patients with congestive heart failure who practiced yoga (n=9), compared to no change in a standard medical therapy group (n=10) \(^{130}\). A further cohort study of female physical trainers found that one month of yoga practice led to 14% greater maximal work efficiency \(^{111}\). Maximal work efficiency was also seen to improve in non-randomised controlled trial by 34% in athletes after 24 months of regular yoga practice compared to a control group practicing physical exercise \(^{112}\).

Not all the studies report improvement in oxygen consumption or work efficiency with regular yoga practice. A 12 month randomised study reports no change in oxygen consumption during submaximal exercise in either a yoga or aerobic training group \(^{113}\). In another randomised study no change in VO\(_{2\text{max}}\) is reported after 8 weeks yoga practice group (n=10) compared to no-intervention control group (n=11) \(^{129}\). Similarly, two 3 months cohort studies report no change in oxygen consumption at rest after regular yoga practice \(^{109,\,110}\) and similar results are reported in a 12 month randomised controlled trial \(^{113}\). In contrast to most of the above mentioned studies, one small cohort study reported increased oxygen consumption during submaximal exercise after 6 months of regular yoga practice in healthy subjects despite an observed reduction in resting core body temperature \(^{108}\).
When examining oxygen consumption at rest, two studies report basal oxygen consumption to be significantly less in regular yoga practitioners compared to non-yoga practitioners. One study\(^{70}\) reports that regular yoga practitioners had basal metabolic rate (BMR) 13% less than predicted based on the FAO/WHO/UNU equation\(^{143}\) and that oxygen consumption during basal conditions was significantly less in regular yoga practitioners compared to non-yoga practitioners. Similar results were reported in a second study, which report that regular yoga practitioners had basal metabolic rate that was 17.8% less than non-yoga practitioners\(^{71}\).

Discussion

Studies published to date suggest that yoga practices can have profound metabolic effects producing both significant increases and decreases in oxygen consumption. Like other physical activity, physical yoga postures can increase oxygen consumption dramatically, yet yoga practices do not involve maximal exertion. For example, dynamic postures such as cobra pose are reported to increase oxygen consumption by 383% or around 1220ml/min, which is less than half that produced with maximal exercise in the average untrained healthy male\(^3\).

The most dramatic change seen with yoga is reduction of oxygen consumption with reports of yoga practices down regulating the sympathetic nervous system and producing modest reductions in oxygen consumption comparable to practices such as progressive muscle relaxation, closed eyes relaxation and listening to music\(^{123, 124, 134, 136}\) as well as reports of reductions of dramatic reductions up to 40%\(^{99}\). This suggests that yoga may down-regulate the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic activity and therefore promote relaxation and stress relief.

Regular yoga practice also appears to have a training effect, with regular yoga practitioners consistently showing significant reductions in oxygen consumption during normal physical activity compared to non-yoga practitioners. Thus, unlike other physical training, which generally increases resting metabolic rate\(^{144, 145}\), regular yoga practice is reported to decrease resting oxygen consumption to levels lower than predicted by the FAO /WHO/UNU equation\(^{70}\). This may be due to regular physical training producing an increase of muscle mass which requires greater oxygen consumption supply at rest, whereas yoga training may instead increase efficiency of mitochondrial oxidative phosphorylation and reduce O\(_2\) demand.
Yoga practices are also reported to shift lactate threshold (anaerobic threshold) and improve work efficiency indicating aerobic capacity and reduced muscle fatigue to a greater degree compared to physical activity \(112\) and these results are supported by randomised crossover trial documenting reduction in blood lactate, heart rate and BP with regular yoga practice \(146\).

A recent review of yoga and exercise found that yoga may be as effective as, or better than exercise at improving a variety of health-related outcome measures in both healthy and diseased populations \(147\). Despite multiple studies demonstrating the benefits of yoga in various clinical conditions, only one small study examined the effects of yoga and oxygen consumption in a clinical population. This study reported increased aerobic capacity (VO2 max) in patients with congestive heart failure after practicing yoga postures, breathing techniques and meditation over a period of 8 weeks \(130\). Previous research also suggests that instruction on respiration and relaxation in addition to physical exercise enhances respiratory sinus arrhythmia and slows heart rate and breath rate in myocardial infarction patients during rehabilitation \(148\) and that slow rhythmic respiration can be used as a therapeutic tool for anxiety \(149\), hypertension \(150, 151\), and asthma \(152\). Due to the wide variety of yoga practices and styles, further research is required to determine the most appropriate practices for different clinical conditions. Typical yoga sessions of different styles appear to differ in exercise stimulus resulting in varied increase in oxygen consumption \(125, 126, 131, 137\) with profound increase reported during dynamic posture sequences compared to static posture sequences \(126, 131\). Different yoga practices and styles however, are likely to have different health and fitness benefits \(153, 154\).

It appears that breath rate and retention periods are critical in determining oxygen consumption and that yoga practitioners are able to vary their breath rate widely with reported breath rates ranging from 1 breath/min to over 230 breath/min. Oxygen consumption is also reported to paradoxically increase by up to 10% despite breath rates of only 1 breath/min. The most profound changes in oxygen consumption with breathing techniques are seen in advanced yoga practitioners who are reported to increase their oxygen consumption by 208% and their CO2 exhalation by 395% when performing Bhastrika breathing at 232 breath/min, or decrease their oxygen consumption by 16% when performing the same type of breathing at 12 breath/min. Similarly, altering the
retention period during Ujjayi breathing is reported to either increase oxygen consumption by up to 52% when performed with a short retention period with I:R:E of 1:1:1 or decrease by 19% when the same type of breathing is performed with a longer retention period of I:R:E of 1:4:4. Ultradian rhythms in nasal cycles and unilateral-nostril breathing practices may also influence oxygen consumption with alternate nostril breathing being reported to increase oxygen consumption by up to 150%. Advanced yoga practitioners appear to be able to exert extraordinary conscious manipulation of their metabolic and autonomic functions, with reports of yogis being able to tolerate ambient CO₂ levels of more than 7% and O₂ levels less than 12%. There are further reports of advanced yogis being able to reduce oxygen consumption by 40% while meditating in an airtight pit and survive 8 days in an airtight pit with an unrecordable ECG. These reports appear inexplicable, yet are similar to reports of advanced Zen meditators being able to decrease oxygen consumption up to 20% along with dramatic decrease in respiratory rate to 1.5 to 2 breath/min during Zazen meditation, Tum-mo meditators being able to increase or decrease their oxygen consumption by over 60% during seated meditation, or reports of modern free divers being able to hold their breath for over 10 minutes while diving to depths of over 200m. So far, these extreme feats of metabolic control are poorly documented and limited to single case studies or small cohorts. They therefore require further investigation and documentation as they may provide clues about extending the limits of human endurance and metabolic control.

This review suggests that yoga can have profound metabolic effects with a consistent picture emerging from experimental, cohort, non-randomized and randomized controlled trial studies. Yet most of the studies are of poor methodological quality and do not provide adequate reporting of the study design, study population, yoga practices, methods of measurements or statistical methods. Furthermore, most studies were performed in India (n=35) and included only small numbers of adult male yoga practitioners without matched comparison groups. Furthermore, there are 2 randomized controlled trials of healthy people that report no change in oxygen consumption with yoga despite significant changes in other physiological measures. Of these a controlled trial (n=10) reported significant improvements in flexibility with yoga but no change in maximal aerobic capacity, while another controlled trial (n=18) reported improvements in respiratory variables and breath hold time but no change in oxygen consumption during submaximal exercise with yoga. A further cohort study (n=10) reported
significant improvements in biochemical and anthropometric parameters after 3 months of yoga practice but did not find any change in oxygen consumption \(^{(109)}\).

The small sample sizes, variable practices, and limited, non-clinical populations involved in the reviewed studies make it difficult to generalise results to wider populations or make definitive statements about specific practices. Thus more rigorous studies with larger samples and standardised practices are required to determine the role of yoga in modulating oxygen consumption and determine if the reported results can be reproduced in non-Indian, female, adolescent and non yoga-practicing populations as well as in different clinical conditions. The reports of advanced yogis performing extraordinary feats also warrant further investigation using modern equipment and research methodologies.

Conclusion

Research to date on yoga and metabolism includes many heterogeneous yoga practices in studies of poor methodological quality. This research suggests that yoga practices can produce dramatic changes in oxygen consumption and metabolism and that regular yoga practice may lead to reduced resting metabolic rate. Research further suggests that different yoga postures and breathing practices, which involve the control of respiratory rate and retention periods, may produce markedly different metabolic effects with reductions in oxygen consumption being more dramatic than increases. The extraordinary volitional control over autonomic functions and remarkable feats of metabolic endurance demonstrated by advanced yoga practitioners warrant further investigation and further more rigorous research on standardised practise is required to determine the relevance of yoga practices in various clinical conditions.
Disclosures

Acknowledgement

The work for this article was all performed at RMIT University. The authors would like to acknowledge the assistance of RMIT University biomedical librarian Savita Hazari for her help in conducting the searches and sourcing and obtaining articles.

Author Contribution

Anupama Tyagi was responsible for conducting the literature searches, preparing the tables and writing the first draft of the article. Marc Cohen was responsible for conceiving the article, categorising the papers and assisting in writing the article and reviewing drafts.

Declaration of Conflicting Interests

There are no conflicting interests.

Funding

This article was prepared as part of Anupama Tyagi’s PhD research. No external funds or grants were sought or provided.

Ethical Approval

As this article represents a systematic review of literature and no human or animal experimentation, no ethics review was sought or required.
Studies identified in primary search (n=254)

Studies identified through other sources (n=29)

Total studies (n=283)

Duplicate articles (n=132)

Relevant Studies remaining (n=151)

Non English Literature (n=4)
Unobtainable (n=12)
In press (n=7)
Protocol (n=5)

Filtered studies extracted (n=123)

Review – 8
Letters -3
Reports and overview - 5
OC not an outcome - 38
Intervention other than yoga - 11

Finally selected studies (n=58) with 2 studies included in more than one category (Ray, Pathak et al. 2011 & Danucalov, Simâjes et al. 2008)

- Pranayama (n=16)
- Meditation/Relaxation (n=15)
- Asana and integrated yoga (n=13)
- Integrated Yoga with physical activity (n=17)

Figure 1: Flow Chart of Study Search and included studies
<table>
<thead>
<tr>
<th>Study Reference</th>
<th>Population</th>
<th>Study Design</th>
<th>Intervention</th>
<th>Comparators</th>
<th>Metabolic Measures</th>
<th>Cardio-respiratory and Other Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyamura, Nishimura et al. 2002 (139)</td>
<td>Advanced male yoga practitioner (n=1);</td>
<td>Single practice on a single occasion</td>
<td>Ujjayi breathing at 1 breath/min</td>
<td>Pranayama versus post-pranayama</td>
<td>↑ of 10% in OC during Ujjayi breathing session 9% higher compared to post.</td>
<td></td>
</tr>
<tr>
<td>Miles and Behanan 1934 (118)</td>
<td>Male yoga practitioner (n=1);</td>
<td>Multiple practices on a single occasion</td>
<td>Ujjayi, Kapalbhati and Bhashrika breathing</td>
<td>Sitting and reclined postures versus Pranayama</td>
<td>↑ of 33%, 35% and 30% in OC of during pranayama compared to sitting and 39%, 41% & 36% compared to reclined</td>
<td></td>
</tr>
<tr>
<td>Miles 1964 (119)</td>
<td>Male yoga practitioner (n=1);</td>
<td>Multiple practices on multiple occasions</td>
<td>Ujjayi (40 seconds retention at 1.26 breath/min); Kapalbhati (12.5 & 80 breath/min); Bhashrika (21 & 1.3 breath/min);</td>
<td>Baseline versus pranayama practices</td>
<td>↑ of 25% in OC during Ujjayi, 12% during Kapalbhati and 19% during Bhashrika</td>
<td></td>
</tr>
<tr>
<td>Rao 1968 (86)</td>
<td>Male yoga practitioner (n=1);</td>
<td>Single practice on two occasions</td>
<td>Ujjayi breathing at two different altitude of 520 meter and 3800 meter</td>
<td>Baseline versus Ujjayi breathing at low altitude; Baseline breathing versus Ujjayi at high altitude</td>
<td>↑ of 7.7% in OC during Ujjayi with breath rate 1.5 breath/min at low altitude; ↑ of 9.9% in OC during Ujjayi at breath rate 3 breath/min at high altitude; OC during Ujjayi at high altitude was 16% higher compared to lower altitude</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Practices per occasion</td>
<td>Breathing Technique</td>
<td>Baseline vs. Breathing</td>
<td>Additional Effects</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Frostell, Pande et al. 1983</td>
<td>Experienced male yoga practitioners</td>
<td>Single practice</td>
<td>Bhrastrika at 232 breath/min</td>
<td>Baseline versus Bhrastrika breathing with internal retention and external retention</td>
<td>Up of 208% in OC and 395% in CO₂ exhalation during Bhrastrika; Up of 30 BPM (47%) in HR; Up of 88.4 l/min (15 fold increase) in MV; Up of 65% in CO₂</td>
<td></td>
</tr>
<tr>
<td>Karambelkar 1983</td>
<td>Male yoga practitioners (n=3)</td>
<td>Multiple on a single occasion</td>
<td>Bhastrika with internal retention (I:R:E= 8:32:16) and external retention (E:R:I= 3:20:10);</td>
<td>Internal Retention: Up of 15% in OC and 13% in CO₂ exhalation during Bhastrika; External Retention: Up of 17% in OC and 32% in CO₂ exhalation during Bastrika;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karambelkar 1988</td>
<td>Male yoga practitioners (n=7)</td>
<td>Single practice on a single occasion</td>
<td>Kapalbhati at 120 breath/min</td>
<td>Pranayama practices versus baseline</td>
<td>Up of 51% in OC and 34% in CO₂ exhalation during Kapalbhati; Up of 219% in MV during breathing;</td>
<td></td>
</tr>
<tr>
<td>Karambelkar 1982</td>
<td>Male yoga practitioners (n=8)</td>
<td>Multiple on a single occasion</td>
<td>Kapalbhati at 120 breath/min and Hyperventilation breathing at 26 breath/min</td>
<td>Baseline breathing versus Kapalbhati breathing and hyperventilative breathing</td>
<td>Up of 50% in OC and 33% in CO₂ exhalation during Kapalbhati; Up of 133% in OC and 379% in CO₂ exhalation during hyper ventilative breathing; Up of 209% in MV and 63% in VT during Kapalbhati; Up of 538% in MV and 250% in VT during hyper ventilative breathing;</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Intervention</td>
<td>Outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kambelkar 1983 (91)</td>
<td>Regular and beginner male yoga practitioners (n=9)</td>
<td>Single practice on a single occasion Ujjayi breathing with internal</td>
<td>Significant ↓ of 21% in OC and ↑ of 34% in OC was observed during the same practices, ↓OC was only seen in the regular yoga practitioners.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danucalov, Simões et al. 2008 (138)</td>
<td>Experienced yoga practitioners with >3 years’ experience (n=9);</td>
<td>Multiple practices on a single occasion Slow paced pranayama with extended period of retention (Internal retention- I:R:E -1:4:2) and meditation; Each phase of 30 minutes;</td>
<td>↑ of 20% in OC and ↑ of 25% in CO<sub>2</sub> exhalation during pranayama compared to baseline; ↑ of 84.6% in OC during pranayama compared to meditation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telles and Desiraju 1991 (92)</td>
<td>Male yoga practitioners</td>
<td>Multiple practices on a single occasion Ujjayi breathing with 2 different internal retention periods: Short retention (I:R:E - 1:4:4), Long retention (I:R:E - 1:1:1)</td>
<td>Baseline versus pranayama ↑ of 52% in OC (P<0.05) during pranayama with short retention (1:1:1); ↓ of 19% in OC (P<0.025) during pranayama with long retention (1:4:4);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telles, Nagarathsna et al. 1996 (93)</td>
<td>Male yoga practitioners</td>
<td>Multiple practices on two occasions RNB§§ session and normal breathing session; (Each session of 45 minutes on different days)</td>
<td>Baseline breathing versus Post RNB session and post NB session ↑ of 18% in OC (P<0.05) after RNB; No significant change after Normal breathing compared to baseline; ↑ of 9.3% SBP¶¶ (P<0.05) after RNB; ↓ of 60% in GSR¶¶ after RNB;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prasad, Venkata</td>
<td>Male Yoga</td>
<td>Multiple ANB*** for 30 minutes, Treadmill Resting, field walk and</td>
<td>↑ of 150% in OC (P<0.01) during exhalation during Ujjayi;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Practices</td>
<td>Comparison</td>
<td>Findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramana et al. 2001 (94)</td>
<td>practitioners with >3 years' experience (n=12);</td>
<td>walk at 3km/hr (1.9 mph) for 30 minutes and field walk 1.5 km/30 min;</td>
<td>treadmill walk versus ANB</td>
<td>OC during ANB 19.6% (P<05) lower compared to field walk and 37.5% (P<01) lower compared to treadmill walk;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ray, Pathak et al. 2011 (95)</td>
<td>Male yoga practitioners with >6 years' experience (n=20);</td>
<td>Multiple [Hatha Yoga session - comprising variety of yoga static postures interspersed with Shavasana, pranayamas and meditation practices; VO2max session; (Each session on different days)]</td>
<td>Sitting rest (Sukhasana) versus each individual pranayama versus rest sitting</td>
<td>↓ of 16% in OC during Bhashrika; ↑ of 65%, 61%, 33% (P<05) in OC during Raven Beak (Kaki Mudra) breathing (P<05), 61% during I breathing (P<05), 103ml/min (33%) during Kapalbhati (P<05);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telles, Nagarathna et al. 1994 (96)</td>
<td>Male yoga practitioners (n=48);</td>
<td>4-weeks regular practice in multiple groups</td>
<td>Post pranayama intervention for versus pre intervention</td>
<td>↑ of 37% in OC (P<05) post RNB, ↑ of 24% in OC post LNB and ↑ of 18% in OC post ANB compared to pre intervention.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Summary of studies reporting changes in OC with pranayama practice(s)

Abbreviations used: OC* - oxygen consumption; HR† - heart rate; CO2‡ - carbon dioxide; MV§ - minute ventilation; VTǁ - tidal volume; I:R:E¶ - Inspiration:Retention:Expiration; E:R:I** - Expiration:Retention:Inspiration; BPM†† - beats per minute; CO‡‡ - cardiac output; RNB§§ - right nostril breathing; SBPǁǁ - systolic blood pressure; GSR¶¶ - galvanic skin resistance; ANB*** - alternate nostril breathing; LNB††† - left nostril breathing
<table>
<thead>
<tr>
<th>Study Reference</th>
<th>Population</th>
<th>Study Design</th>
<th>Intervention</th>
<th>Comparators</th>
<th>Metabolic Measures</th>
<th>Cardio-respiratory and Other Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anand, Chhina et al. 1961</td>
<td>Experienced male yoga practitioner (n=1);</td>
<td>Single practice on two occasions</td>
<td>Stay in air tight box during two different days of 10 hours each</td>
<td>Baseline (basal) versus stay in box</td>
<td>↓ of 37.4% and 32% in OC during two different sessions.</td>
<td>↓ in HR up to 25BPM during session; HR rose only when ambient O2 declined to 15% and CO2 reached to 5% in the pit; OC declined to 50% of BMR (19.5l/hr) on one occasion:</td>
</tr>
<tr>
<td>Karambelkar, Vinekar et al. 1968</td>
<td>Experienced male yoga practitioners (n=4);</td>
<td>Single practice on a single occasion</td>
<td>Stay in air tight pit >12 hours and up to 18 hours</td>
<td>Baseline (basal) versus stay in pit</td>
<td>OC during stay in pit lesser than basal condition; Subjects remained in pit till ambient O2 declined to 12% and CO2 rose to 7%; The maximum stay in pit for 18 hours when ambient CO2 was 7.7% and O2 11.6%.</td>
<td>HR and BR rose when ambient CO2 reached to 5% in pit;</td>
</tr>
<tr>
<td>Craig Heller, Yogi male (Proficient)</td>
<td>Single practice</td>
<td>Stay in subterranean chamber for 4</td>
<td>Baseline (basal) versus stay in box</td>
<td>↓ of 40% in OC during the stay in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Intervention</td>
<td>Outcome Measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>-----------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elsner et al. 1987 in bhoogarbh smadhi- (subterranean stay) (n=1);</td>
<td>on a single occasion hours stay in pit chamber compared to basal baseline measured through gas volume meter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wallace 1970 (120) Meditators with >6 months experience (n=15);</td>
<td>Single practice on a single occasion Transcendental meditation (TM); 30 minutes meditation session Baseline versus Meditation measured through ↓ of 20% in OC during meditation compared to baseline; ↑ of 103% in GSR** during onset of meditation;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wallace, Benson et al. 1971 (121) Meditators with mean 29.4 months experience (n=36);</td>
<td>Single practice on a single occasion Transcendental meditation; 30 minutes meditation session; Baseline versus Meditation ↓ of 17% in OC (P<005) and ↓ of 15% in CO₂ exhalation (P<005) during meditation; ↓ in HR and BR (P<0.01) during meditation; ↑ of 158% in GSR (P<0.005) during meditation;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benson, Steinert et al. 1975 (122) Meditators with >1 year experience (n=13);</td>
<td>Single practice on a single occasion Transcendental meditation; 30 minutes meditation session; Baseline versus Meditation ↓ of 5% in OC (P<0.001) and ↓ of 6% in CO₂ exhalation (P<0.001) during meditation; ↓ in HR (P<0.01) during meditation;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danucalov, Simões et al. 2008 (138) Experienced yoga practitioner with >3 years’ experience (n=9);</td>
<td>Multiple practices on a single occasion Slow paced Pranayama with extended period of retention (Internal retention- I:R:E** - 1:4:2) and meditation; Each phase of 30 minutes; Baseline versus Meditation and pranayama ↓ of 35% in OC (P<0.05) and ↓ of 31.2% in CO₂ exhalation (P<0.05) during meditation compared to baseline and pranayama; ↓ of 49% in OC during meditation compared to pranayama; ↑ of 20% in OC during pranayama;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Authors</td>
<td>Participants</td>
<td>Procedures</td>
<td>Experimental Design</td>
<td>Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenwick, Donaldson et al. 1977</td>
<td>Meditators with >22 months experience (n=11) and non-meditators (n=8);</td>
<td>Multiple practices on a single occasion Transcendental meditation (TM) and listening music</td>
<td>Baseline versus meditation and listening to music in meditators and non-meditators; Comparison between groups</td>
<td>Non-significant drop in OC and CO<sub>2</sub> exhalation during meditation in meditators and non-meditators both; No evidence of hypometabolism during meditation in both groups;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warrenburg, Pagano et al. 1980</td>
<td>Regular meditators with mean 3.4 years’ experience (n=9); Regular relaxation practitioners with mean 6.4 years’ experience (n=9); Non practitioners (n=9);</td>
<td>Multiple practices on a single occasion Transcendental meditation (TM); Progressive muscle relaxation (PMR); Non practitioner – listening music; Control periods of closed eyes and reading book versus intervention</td>
<td>Comparison between groups</td>
<td>↓ in OC during TM 4%, during PMR 3.5%, in regular practitioners and 8.3% in non-practitioners (Ps<01) compared to periods of control; Non-significant difference between groups;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kesterson and Clinch 1989</td>
<td>Advanced meditators with mean 28 years experience (n=33); non-meditators</td>
<td>Multiple practices on a single occasion Transcendental meditation (TM), Non-meditators - eyes closed relaxation</td>
<td>Baseline versus intervention; Comparison between the groups;</td>
<td>Similar significant drop in OC (P<002) during TM and relaxation; No traces of hypometabolism in either group;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Sample Description</td>
<td>Intervention</td>
<td>Control</td>
<td>Outcome Measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>---------------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telles, Nagarathna et al.</td>
<td>Male meditators with >5 year experience (n=7);</td>
<td>Multiple Aum meditation session and sitting relaxed session; (Each session of 20 minutes on different days)</td>
<td>Baseline rest versus post meditation and eyes closed relaxation</td>
<td>Non-significant change in OC in post meditative session compared to baseline; ↓ in HR (P<001) during meditation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>(n=10);</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vempati and Telles 1999</td>
<td>Male yoga practitioner with mean 23.9 months experience (n=40);</td>
<td>Multiple Yoga based Isometric relaxation and supine rest; (Each session of 10 minutes on different days)</td>
<td>Baseline rest versus post relaxation and supine rest</td>
<td>↓ of 23% (P<001) in OC in post yoga relaxation compared to baseline; ↓ of 7% in OC after supine rest; ↓ of 20.6% in BR (P<01) post yoga relaxation;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n=40);</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vempati and Telles 2002</td>
<td>Male yoga practitioner with mean 30.2 months experience (n=35);</td>
<td>Multiple Yoga based guided relaxation session and supine rest session; (Each session of 10 minutes on different days)</td>
<td>Baseline rest versus post relaxation and supine rest</td>
<td>↓ of 25.2% in OC (P<001) in post yoga relaxation compared to baseline; ↓ of 7% in OC after supine rest; ↓ of 9.7% in HR (P<001), ↓ in LF‡‡ (P<05), ↑ in HF§§ (P<05) after relaxation compared to baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n=35);</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ray, Pathak et al. 2011</td>
<td>Male yoga practitioners >6 years’ experience (n=20);</td>
<td>Multiple Hatha Yoga session - comprising variety of yoga static postures interspersed with Shavasana, pranayamas and meditation practices; VO2_{max} session; (Each session on different days)</td>
<td>Rest sitting (Sukhasana) versus Meditation and Aum meditation</td>
<td>↓ of 15% in OC (P<05) during meditation and 4% during Om meditation compared to Sukhasana; ↓ of 37% in BR (P<05) during Om Meditation;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n=95);</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Healthy non-practitioner males (n=39) - 15-weeks of regular practice

<table>
<thead>
<tr>
<th>Meditation group – (n=21)</th>
<th>Baseline versus immediately after practice of first session and then after 5, 10 and 15 weeks apart</th>
<th>Meditators displayed greater reduction in OC during the practice; reduction in OC more prominent in relaxation overtime of 15 weeks compared to meditation;</th>
<th>Reduction in HR in Meditation group prominent (P<05) compared to relaxation over time;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcendental meditation, relaxation group – (n=18) Progressive muscle relaxation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summary of studies reporting changes in OC with mediation/relaxation practice(s)

Abbreviations used: – OC† - oxygen consumption; HR† - heart rate; BPM† - beats per minute; CO₂§ - carbon dioxide; BMR‡ - basal metabolic rate; BR¶ - breath rate;

GSR** - galvanic skin resistance; I:R:E†† - Inspiration:Retention:Expiration; LF‡‡ - low frequency; HF§§ - high frequency;
<table>
<thead>
<tr>
<th>Study Reference</th>
<th>Population</th>
<th>Study Design</th>
<th>Intervention</th>
<th>Comparators</th>
<th>Metabolic Measures</th>
<th>Cardio-respiratory and Other Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rao 1962</td>
<td>Male yoga practitioners (n=6); on a single occasion</td>
<td>Single practice</td>
<td>Head stand posture</td>
<td>Baseline recumbent and standing erect versus head stand posture</td>
<td>↑ of 68% and 48% in OC during headstand posture compared to recumbent position and standing erect respectively;</td>
<td></td>
</tr>
<tr>
<td>Rai and Ram 1993</td>
<td>Male yoga practitioners (n=10); on a single occasion</td>
<td>Single practice</td>
<td>Virasana (Hero Pose)</td>
<td>Baseline Shavasana</td>
<td>Subgroup 1: ↑ of 159% in OC (P<005) and ↑ of 223% in CO₂ † exhalation (P<01) during Virasana in group with BR ‡ >10 breath/min; Subgroup 2: ↑ of 163% in OC (P<05) and ↑ of 166% in CO₂ exhalation during Virasana in group with BR <5 breath/min; ↑ of 60% (P<0005) and 43% (P<001) in HR § in subgroup 1 and 2 respectively;</td>
<td></td>
</tr>
<tr>
<td>Rai, Ram et al. 1994</td>
<td>Male yoga practitioners (n=10); on a single occasion</td>
<td>Single practice</td>
<td>Siddhasana (Accomplished pose)</td>
<td>Baseline Shavasana</td>
<td>Subgroup 1: ↑ of 27% in OC (P<01) and ↑ of 31% (P<.01) in CO₂ exhalation during Siddhasana in group with >10 breath/min; Subgroup 2: ↑ of 21% in OC and ↑ of 25% in CO₂ exhalation during Siddhasana in group with >5 breath/min; ↑ of 13% (P<01) and of 15% (P<001) in HR in subgroup 1 and 2 respectively;</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Gender</td>
<td>Experience</td>
<td>Practice</td>
<td>Yoga Sequence</td>
<td>Comparison</td>
<td>Observed Changes</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Sinha, Ray et al. 2004</td>
<td>Male yoga practitioners</td>
<td>Single practice on a single occasion</td>
<td>Sun salutation (SS) – 12 dynamic postures preceded and followed by Shavasana</td>
<td>Comparison between each individual posture of SS and Shavasana</td>
<td>↑ of 207% in OC during complete session of SS compared to Shavasana; ↑ of 383% during 8th pose (Cobra) compared to Shavasana; OC higher (P<05) during backward bending poses (2nd, 4th, 5th and 8th poses) compared to forward bending poses (3rd and 11th);</td>
<td>HR range - 83.5 BPM to 101.6 BPM during entire SS compared to 60.2 BPM during Shavasana;</td>
</tr>
<tr>
<td>Blank 2006</td>
<td>Female yoga practitioners</td>
<td>Single practice on a single occasion</td>
<td>Iyenger Yoga posture sequences – warm-ups, 20 individual postures and releasing poses with Shavasana</td>
<td>Comparison between each individual posture and postures divided in sets (Back arch, inversion, standing, supine and seated) versus Shavasana</td>
<td>↑ of OC during standing, back arch and inversion poses (P<05) compared to supine and seated posture; ↑ of 300% of OC (P<05) during warrior pose III compared to Shavasana; ↑ of 144% in OC during 65 minutes yoga session compared to Shavasana</td>
<td>Back arch poses 75% of HRmax</td>
</tr>
<tr>
<td>Hagins, Moore et al. 2007</td>
<td>Yoga practitioners with >1 year experience in yoga; 2 males; 28 females</td>
<td>Multiple practices on a single occasion</td>
<td>Ashtanga yoga session of 56 minutes – Warm-up, sun salutation and non-sun salutation poses; Mild and moderate sub maximal exercise- treadmill walk at 2mph and Sun salutation versus non sun salutation poses</td>
<td>Baseline rest and mild to moderate exercise versus yoga session; OC 14% lower during yoga sequence compared to mild exercise and 33% lower to Yoga sequence</td>
<td>↑ of 100% in OC (P<0001) during yoga session compared to rest. ↑ of 31% in HR (P<0001) during yoga compared to rest;</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Participants Details</td>
<td>Methodology</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telles, Reddy et al. 2000</td>
<td>Male yoga practitioner with >3 months experience (n=40); Multiple practices on two occasions</td>
<td>Cyclic meditation-‘CM’ session and Shavasana session (Each session on different days) Baseline rest versus post-practice session of CM and Shavasana</td>
<td>OC 25% higher (P<001) during sun salutation compared to non-sun salutation poses; HR 15% higher during sun salutation compared to non-sun salutation poses; ↓ of 32% in OC (P<001) post CM; ↓ of 10% in OC (P<05) post Shavasana compared to baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarang and Telles 2006</td>
<td>Male yoga practitioner with >3 months experience (n=50); Multiple practices on two occasions</td>
<td>Cyclic meditation session – ‘CM’ (divided into 4 phases) and Shavasana session and Shavasana session (Each session on different days) Baseline rest versus post-practice session of CM and Shavasana</td>
<td>↑ of 31.3% in OC(P<001) during active phases of CM; ↓ of 19.4% in OC (P<001) post CM compared to baseline; ↓ of 7% in OC (P<001) post Shavasana; Non-significant change in OC during Shavasana compared to baseline; ↑ up to 21% in BR (P<001) during CM and ↓ of 7% (P<05) in BR post CM compared to baseline;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiCarlo, Sparling et al. 1995</td>
<td>Yoga practitioners with >1 year experience (n=10); Multiple practices on two occasions</td>
<td>Hatha yoga - 12 standing postural sequence session; Sub maximal exercise sequence session; and VO2_max session Sub maximal exercise session versus Hatha yoga routine session</td>
<td>OC 26% lower during yoga sequences(P<05) compared to sub maximal exercise in first 8th minute and remained lower during; HR 4% higher in during yoga sequence (P<05) compared to sub</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Location</td>
<td>Duration</td>
<td>Intervention Details</td>
<td>Key Findings</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
<td>----------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Carroll, Blansit et al.</td>
<td>Yoga practitioners with >3 months experience (n=13); 2 males, 28 females</td>
<td>Multiple practices on two occasions</td>
<td></td>
<td>Vinyasa Yoga sequences and VO${2\max}$ versus Viniyasa yoga complete session; Yoga session 34% of VO${2\max}$ and sub maximal exercise 46% of VO$_{2\max}$</td>
<td>Yoga session >50% of VO$_{2\max}$</td>
<td></td>
</tr>
</tbody>
</table>
| Clay, Lloyd et al. 2005 | Yoga practitioners with >1 month experience (n=30); 2 males, 28 females | Multiple practices on two occasions | | Hatha yoga session – Warm-ups, sun salutation, non-sun salutation and cool down poses; Sub maximal exercise - treadmill walk at 3.5mph and VO$_{2\max}$ session; (Each session on different days) | Chair sitting, sub maximal exercise and VO$_{2\max}$ session versus Hatha yoga session; Yoga session 14.5% and sub maximal exercise 44.8% of VO$_{2\max}$; OC 82% higher (P<05) during sun salutation compared to non-sun salutation; ↑ of 24% in HR (P<05) during yoga session compared to chair sitting; HR 21% lower (P<05) during yoga session compared to sub maximal exercise; | ↑ of 114% in OC (P<05) during yoga session compared to chair sitting; OC 54% lower (P<05) during yoga session compared to sub maximal exercise; HR 20% higher (P<0.05) during sun salutation compared to non-sun salutation;
<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Practices</th>
<th>Session Description</th>
<th>VO2(_{\text{max}}) Session and Baseline Rest versus Thai Yoga Session</th>
<th>Changes in OC (%) Compared to Baseline Rest</th>
<th>Changes in HR (%) Compared to Baseline Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buranruk, La Grow et al. 2010</td>
<td>Middle aged non-yoga practitioners (n=17);</td>
<td>Multiple practices on two occasions</td>
<td>Thai yoga session – warm-ups, sitting and lying poses; VO2(_{\text{max}}) session and baseline rest versus Thai yoga session calorimetry</td>
<td>↑ of 133% during Yoga session compared to rest; Yoga session 35.5% of VO2({\text{max}}) OC 46% higher (P<0.001) during standing poses compared to sitting; HR during yoga sequence 50% of HR({\text{max}}); HR 10.6% higher (P<0.001) during standing poses compared to sitting;</td>
<td>↑ of 16.6% in HR during Thai yoga compared to rest;</td>
<td></td>
</tr>
<tr>
<td>Ray, Pathak et al. 2011</td>
<td>Male yoga practitioners with >6 years’ experience (n=20);</td>
<td>Multiple practices on two occasions</td>
<td>Hatha Yoga session - comprising variety of yoga static postures interspersed with Shavasana, pranayamas and meditation practices; postures; VO2(_{\text{max}}) session; (Each session on different days)</td>
<td>↑ of 160% in OC (P<0.05) during plough pose-1 & 2 compared to Shavasana; 1 & 2 compared to Shavasana;</td>
<td>↑ of 108% in BR during plough pose-2</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Summary of studies reporting changes in OC with asana, integrated practice(s)

Abbreviations used: OC\(^*\) - oxygen consumption; CO2\(^\dagger\) - carbon dioxide; BR\(^\ddagger\) – breath rate; HR\(^\S\) – heart rate BPM\(^\|\) - beats per minute;
<table>
<thead>
<tr>
<th>Study Reference</th>
<th>Population</th>
<th>Study design and duration</th>
<th>Intervention</th>
<th>Comparators</th>
<th>Metabolic Measures</th>
<th>Cardio-respiratory and Other Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salgar, Bisen et al. 1975 (107)</td>
<td>Healthy males (n=38);</td>
<td>Multiple practices on single</td>
<td>6 months of regular lotus posture (n=10); resistance training (n=12); sedentary lifestyle (n=16);</td>
<td>Comparison between groups during mild and moderate level ergometer exercise</td>
<td>At mild level exercise the OC was lowest in lotus group followed by exercisers and non-exercisers; At moderate level exercise OC lowest in exercisers followed by lotus and non-exerciser group</td>
<td></td>
</tr>
<tr>
<td>Bhatnagar, Ganguly et al. 1978 (108)</td>
<td>Healthy non yoga practitioners (n=20);</td>
<td>6-month Cohort study of multiple practices</td>
<td>Regular integrated yoga practices</td>
<td>Pre yoga intervention sub maximal exercise versus fixed intensity sub maximal exercise after 1,3 and 6 months of yoga practice</td>
<td>Progressive increase in OC during sub maximal exercise (P< 05) in 3 and 6 months compared to pre intervention; No significant increase after 1 month</td>
<td></td>
</tr>
<tr>
<td>Joseph, Sridharan et al. 1981 (109)</td>
<td>Healthy male non yoga practitioners (n=10);</td>
<td>3-month Cohort study of multiple practices</td>
<td>Regular integrated yoga practices</td>
<td>Pre yoga intervention rest versus post yoga intervention rest</td>
<td>Non- significant decrease in resting OC; ↓ in resting body core temperature (P<05, P<001,P<001) in 1, 3 and 6 months compared to pre intervention; ↓ of 7.8% in HR; ↓ in SBP/DBP (P<001); ↓ in blood</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Duration</td>
<td>Practices</td>
<td>Pre yoga intervention</td>
<td>Post yoga intervention</td>
<td>Changes</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>----------</td>
<td>------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Raju, Kumar et al. 1986</td>
<td>Non yoga practitioners (n=12);</td>
<td>3-month Cohort study of multiple practices</td>
<td>Regular integrated yoga practice</td>
<td>Pre yoga intervention rest versus post yoga intervention rest versus; Pre yoga intervention sub maximal exercise versus Sub maximal exercise after 20 days and 3 months of yoga practice</td>
<td>Non-significant change in resting OC in either gender; ↓ of 41% in OC (P<05) during submaximal exercise after 20 days and ↓ of 36% in OC (P<05) during sub-maximal exercise after 3 months in males only;</td>
<td>↓ of 65.5% in blood lactate (P<05) in males at same exercise workload after 3 months; No significant changes in females;</td>
</tr>
<tr>
<td>Balasubramani and Pansare 1991</td>
<td>Healthy non yoga practitioners (n=17);</td>
<td>6-week Cohort study of multiple practices</td>
<td>Integrated yoga practice</td>
<td>Pre yoga intervention VO₂ max versus post yoga intervention VO₂ max</td>
<td>↑ of 17% in VO₂ max (P<005);</td>
<td></td>
</tr>
<tr>
<td>Raju, Prasad et al. 1997</td>
<td>Healthy female non yoga practitioner (n=6);</td>
<td>4-week Cohort study of multiple practices</td>
<td>Integrated yoga practice</td>
<td>Pre yoga intervention VO₂ max versus exercise versus post yoga intervention VO₂ max</td>
<td>↓ of 14% in OC (P<05) per unit of work load; ↑ of 21% in maximal work load (P<05) in post yoga intervention compared to pre yoga intervention</td>
<td>↓ of 6% in HR (P<05) post yoga intervention; ↓ in body fat & weight (P<05);</td>
</tr>
<tr>
<td>Tran, Holly et al. 1996</td>
<td>Healthy non yoga</td>
<td>8-week Integrated yoga session</td>
<td>Pre yoga intervention</td>
<td>Pre yoga intervention</td>
<td>↑ of 10% in VO₂ max (P<01);</td>
<td>↑ in muscular</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Design</td>
<td>Intervention</td>
<td>Outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>al. 2001<sup>128</sup></td>
<td>Practitioners (n=10); Cohort study of multiple practices</td>
<td>VO2<sub>max</sub> versus post yoga intervention VO2<sub>max</sub></td>
<td>Strength (P<05), muscular endurance (P<01) and flexibility (P<001); Increase in HR<sub>max</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Improvement in Lipid profile and blood glucose and BMI<sup>1</sup> (P<05) in both groups;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramos-Jiménez, Hernández-Torres et al. 2011<sup>142</sup></td>
<td>Female middle and old aged yoga practitioners with >3 years' experience (n=13); Cohort study of multiple practices</td>
<td>Integrated intensive yoga training; Pre yoga intervention VO2<sub>max</sub> versus post yoga intervention VO2<sub>max</sub></td>
<td>↑ of 3% in VO2<sub>max</sub> (P<05) in middle aged group and ↑ of 17% in VO2<sub>max</sub> (P<05) in older aged group; Increase in HR<sub>max</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Improvement in Lipid profile and blood glucose and BMI<sup>1</sup> (P<05) in both groups;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raju, Madhavi et al. 1994<sup>112</sup></td>
<td>Healthy male non-yoga practitioners (n=28); 24-month NRCT<sup>8</sup> of multiple practices</td>
<td>Yoga group-Pranayama and Shavasana along with regular sports workouts (n=14) Control – Regular sports workouts (n=14) (Each group further sub grouped in Phase 1 and 2 of submaximal (n=12) and maximal exercise (n=16) of duration 12 months and 24 months respectively)</td>
<td>Pre intervention rest versus post yoga intervention rest (phase 1&2); Pre intervention sub maximal and maximal exercise versus post yoga intervention sub maximal and maximal exercise</td>
<td>Phase 1 - ↓ of 38% in OC at resting state in yoga group; ↓ of 51% in OC (P<05) per unit work load with sub maximal exercise in yoga group after intervention; No change in controls either in rest or during exercise; Phase 2 - ↓ of 49% in resting blood lactate (P<01) in yoga group; Phase 2 - ↓ of 37% in resting blood lactate (P<05) in yoga group;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Healthy male non-yoga practitioners (n=28)</td>
<td>6-month RCT** of multiple practices</td>
<td>Yoga group- Integrated yoga practises Pre intervention VO2_{max} (n=17); Physical training as per army program (n=11);</td>
<td>Pre intervention VO2_{max} versus post intervention VO2_{max}</td>
<td>(\uparrow) of 6.7% in VO2_{max} (P<05) in yoga group; No change in physical training group;</td>
<td>work load with maximal exercise in yoga group after intervention; No change in control;</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Nayar, Mathur et al. 1975</td>
<td>Healthy male non-yoga practitioners (n=53);</td>
<td>12-month RCT of multiple practices</td>
<td>Yoga group- Integrated yoga with regular physical training (n=18); Athletic group- Athletics with regular physical training (n=17); Control – regular physical training (n=18);</td>
<td>Pre intervention rest versus post intervention rest: Pre intervention sub-maximal versus post intervention sub-maximal exercise</td>
<td>Non- significant change in OC at rest in either group; Non- significant changes in OC during sub-maximal exercise in either group;</td>
<td>exercise blood lactate after 24 months compared to pre intervention in yoga group; ↓ in body fat and body weight (Ps<01) in yoga group;</td>
</tr>
<tr>
<td>Selvamurthy, Ray et al. 1988</td>
<td>Healthy male non-yoga practitioners (n=30);</td>
<td>6-month RCT of multiple practices</td>
<td>Yoga group- Integrated training (n=15) Pre yoga intervention sub maximal exercise; Physical training ‘PT’ group- running, versus post yoga games, flexibility and pull-ups (n=15);</td>
<td>Pre yoga intervention sub maximal exercise versus post intervention sub maximal exercise</td>
<td>↓ of 5.7% in OC (P<05) in yoga group;</td>
<td>↓ of 7% in HR (P<01) in yoga group;</td>
</tr>
</tbody>
</table>

U. S. Ray, Sinha, Tomer, Pathak, & et al., 2001 (115)

Healthy male non-yoga practitioners (n=28);

6-month RCT** of multiple practices

Yoga group- Integrated yoga practises Pre intervention VO2_{max} (n=17); Physical training as per army program (n=11);

Pre intervention VO2_{max} versus post intervention VO2_{max}

\(\uparrow \) of 6.7% in VO2_{max} (P<05) in yoga group; No change in physical training group;

work load with maximal exercise in yoga group after intervention; No change in control;

exercise blood lactate after 24 months compared to pre intervention in yoga group; ↓ in body fat and body weight (Ps<01) in yoga group;

Nayar, Mathur et al. 1975 (113)

Healthy male non-yoga practitioners (n=53);

12-month RCT of multiple practices

Yoga group- Integrated yoga with regular physical training (n=18);

Athletic group- Athletics with regular physical training (n=17);

Control – regular physical training (n=18);

Pre intervention rest versus post intervention rest:

Pre intervention sub-maximal versus post intervention sub-maximal exercise

Non- significant change in OC at rest in either group; Non- significant changes in OC during sub-maximal exercise in either group;

\(\uparrow \) of 29% in vital capacity (P<01) and 5% in FEV1†† (P<05) in yoga group;

\(\uparrow \) of 46% in breath-hold time (P<01) in yoga group;

↑ of 29% in vital capacity (P<01) and 5% in FEV1†† (P<05) in yoga group;

\(\uparrow \) of 46% in breath-hold time (P<01) in yoga group;
<table>
<thead>
<tr>
<th>Study Authors</th>
<th>Study Design</th>
<th>Subjects</th>
<th>Intervention</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowman et al. 1997</td>
<td>6-week RCT of multiple practices</td>
<td>Sedentary healthy elderly subjects > 62 years (n=40);</td>
<td>Yoga group- Integrate yoga (n=20); Aerobic group- Bicycle based aerobic training (n=20); Pre yoga intervention sub maximal exercise versus post yoga intervention sub maximal exercise</td>
<td>↑ of 13% in VO${2{max}}$ (P<01) in yoga group and ↑ of 24% in VO${2{max}}$ (P<01) in aerobic group; ↓ of 11.6% in HR (P<05) in yoga group; No change in aerobic group; ↑ in baroreflex sensitivity (P<01) in yoga group; No significant change in HRV in either groups;</td>
</tr>
<tr>
<td>Pullen et al. 2008</td>
<td>8-week RCT of multiple practices</td>
<td>Patients with congestive heart failure ‘CHF’ (n=19);</td>
<td>Yoga group- Integrated yoga practices along with standard medical therapy (n=9); Control – Standard medical therapy with general awareness (n=10);</td>
<td>↑ of 17% in VO${2{max}}$ (P<02) in yoga group; No change in controls; Improvement of 25.7% in quality of life scores (P<005) in yoga group</td>
</tr>
<tr>
<td>Tracy and Hart 2012</td>
<td>8-week RCT of multiple practices</td>
<td>Sedentary healthy non yoga practitioners (n=21);</td>
<td>Bikram yoga- 26 series of postures in heated 35°-40°C humidified studio (n=10); Waitlist control (n=11)</td>
<td>Pre yoga intervention VO${2{max}}$ versus post yoga intervention VO${2{max}}$; No change VO${2{max}}$ after yoga training; ↑ of 23.8% in sit and reach score (P<001) and shoulder flexibility (P<05) with yoga;</td>
</tr>
<tr>
<td>Chaya et al. 2006</td>
<td>Multiple practices on a single</td>
<td>Non yoga (NY) and regular yoga practitioners (YP) (n=55);</td>
<td>Yoga practitioners versus Non yoga practitioners at rest (basal state)</td>
<td>Basal OC - 19.3% less in female YPs and 10.7% less in male YPs (Ps<001) compared to NYs; BR 19.6% less (P<001) in female YPs and 19%</td>
</tr>
</tbody>
</table>
Chaya and Nagendra 2008 regular yoga practitioners (YP) with >6 months experience (n=88); Multiple practices on a single occasion YP - Regular integrated yoga practice (n= 51); Non-yoga (NY) and regular yoga practitioners versus NY – (n=37)

| Study | Design | Group 1 | Group 2 | Basal CO2§§ - 12.7% less in female YPs and 14.3% less in male YPs (Ps<05) compared to NYs; BMRǁǁ in YP 15% less (P<001) in YP compared to NY and 13% less than the predicted by WHO/FAO/UNU; Basal OC - 22% less (P<005) in female YPs and 10.7% less (P<05) in male YPs compared to NY females and males respectively; Pre-sleep OC - 17% less in female YPs and 6.7% in male YPs (non-significant) compared to NY females and males respectively; Basal CO2 – 15.3% less in female YPs and 14.8% less in male YPs (Ps<05) compared to NYs; Pre sleep CO2- 13.2% less in female YPs and 8.3% in male YPs compared to NYs | BR 23.3% less (P<005) in female YPs and 15.6% less (P<05) in male YPs during morning compared to NYs; |

Table 4: Summary of studies reporting changes in OC with yoga and physical activity

Abbreviations used - OC* - oxygen consumption; HR† - heart rate; SBP‡ - systolic blood pressure; DBP§ - diastolic blood pressure; BMIǁ - body mass index, NRCT¶ - non randomised controlled trials; RCT** - randomised controlled trials; FEV1†† - forced expiratory volume in 1 second; HRV‡‡ - heart rate variability; CO2§§ - carbon dioxide exhalation; BMRǁǁ - basal metabolic rate; BR¶¶ - breath rate
References

89. Karambelkar PV, & Bhole, M.V. Respiratory studies during kapalbhati for 1,2, 3 and 5 minutes. Yoga Mimamsa. 1988;27((1&2)):69-74.

